资源类型

期刊论文 69

年份

2023 3

2022 1

2021 7

2020 4

2019 3

2018 6

2017 6

2016 5

2015 2

2014 1

2013 2

2012 3

2011 3

2010 1

2009 4

2008 3

2007 7

2006 1

2004 1

2002 1

展开 ︾

关键词

混沌序列 2

运动补偿 2

CAESAR竞赛;认证加密算法;分组密码;序列密码;哈希函数;安全性评估 1

CFD 1

GOCE 1

GRACE 1

YAG激光淬火 1

“四性” 1

三峡电站 1

上举力 1

不均匀性 1

井网设计 1

人工裂缝 1

体外预应力 1

信息有序网络结构 1

全封堵 1

冲刷评估 1

凸块锚固区 1

分割攻击 1

展开 ︾

检索范围:

排序: 展示方式:

Thermoresponsive block copolymer supported Pt nanocatalysts for base-free aerobic oxidation of 5-hydroxymethyl

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1514-1523 doi: 10.1007/s11705-021-2092-4

摘要: A base-free catalytic system for the aerobic oxidation of 5-hydroxymethyl-2-furfural was exploited by using Pt nanoparticles immobilized onto a thermoresponsive poly(acrylamide-co-acrylonitrile)-b-poly(N-vinylimidazole) block copolymer, with an upper critical solution temperature of about 45 °C. The Pt nanocatalysts were well-dispersed and highly active for the base-free oxidation of 5-hydroxymethyl-2-furfural by molecular oxygen in water, affording high yields of 2,5-furandicarboxylic acid (up to>99.9%). The imidazole groups in the block copolymer were conducive to the improvement of catalytic performance. Moreover, the catalysts could be easily separated and recovered based on their thermosensitivity by cooling the reaction system below the upper critical solution temperature. Good stability and reusability were observed over these copolymer-immobilized catalysts with no obvious decrease in catalytic activity in the five consecutive cycles.

关键词: aerobic oxidation     base-free     5-hydroxymethyl-2-furfural     Pt nanoparticle     thermoresponsive block copolymer    

Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in

Yang Zhou, Phillip Choi

《化学科学与工程前沿(英文)》 2017年 第11卷 第3期   页码 440-447 doi: 10.1007/s11705-017-1626-2

摘要: Isothermal-isobaric molecular dynamics simulation was used to study the diffusion mechanism of water in polyurethane- -poly( -isopropyl acrylamide) (PU- -PNIPAm) with a hydrophobic PU/hydrophilic PNIPAm mass ratio of 1.4 to 1 at 298 K and 450 K. Here, the experimental glass transition temperature ( ) of PU is 243 K while that of PNIPAm is 383 K. Different amounts of water up to 15 wt-% were added to PU- -PNIPAm. We were able to reproduce the specific volumes and glass transition temperatures (250 K and 390 K) of PU- -PNIPAm. The computed self-diffusion coefficient of water increased exponentially with increasing water concentration at both temperatures (i.e., following the free volume model of Fujita). It suggested that water diffusion in PU- -PNIPAm depends only on its fractional free volume despite the free volume inhomogeneity. It is noted that at 298 K, PU is rubbery while PNIPAm is glassy. Regardless of temperature, radial distribution functions showed that water formed clusters with sizes in the range of 0.2–0.4 nm in PU- -PNIPAm. At low water concentrations, more clusters were found in the PU domain but at high water concentrations, more in the PNIPAm domain. It is believed that water molecules diffuse as clusters rather than as individual molecules.

关键词: molecular dynamics simulation     amphiphilic block copolymer     free volume     water diffusivity     fujita model    

Preparation of polysulfone-based block copolymer ultrafiltration membranes by selective swelling and

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 745-754 doi: 10.1007/s11705-021-2038-x

摘要: Selective swelling of block copolymers of polysulfone-b-poly(ethylene glycol) is an emerging strategy to prepare new types of polysulfone ultrafiltration membranes. Herein, we prepared nanoporous polysulfone-b-poly(ethylene glycol) ultrafiltration membranes by selective swelling and further promoted their porosity and ultrafiltration performances by using CaCO3 nanoparticles as the sacrificial nanofillers. Different contents of CaCO3 nanoparticles were doped into the solution of polysulfone-b-poly(ethylene glycol), and thus obtained suspensions were used to prepare both self-supported and bi-layered composite structures. Selective swelling was performed on the obtained block copolymer structures in the solvent pair of ethanol/acetone, producing nanoporous membranes with poly(ethylene glycol) lined along pore walls. The CaCO3 nanoparticles dispersed in polysulfone-b-poly(ethylene glycol) were subsequently etched away by hydrochloric acid and the spaces initially occupied by CaCO3 provided extra pores to the block copolymer layers. The porosity of the membranes was increased with increasing CaCO3 content up to 41%, but further increase in the CaCO3 content led to partial collapse of the membrane. The sacrificial CaCO3 particles provided extra pores and enhanced the connectivity between adjacent pores. Consequently, the membranes prepared under optimized conditions exhibited up to 80% increase in water permeance with slight decrease in rejection compared to neat membranes without the use of sacrificial CaCO3 particles.

关键词: block copolymers     selective swelling     ultrafiltration     CaCO3 nanoparticles     sacrificial nanofillers    

Block copolymers as efficient cathode interlayer materials for organic solar cells

Dingqin Hu, Jiehao Fu, Shanshan Chen, Jun Li, Qianguang Yang, Jie Gao, Hua Tang, Zhipeng Kan, Tainan Duan, Shirong Lu, Kuan Sun, Zeyun Xiao

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 571-578 doi: 10.1007/s11705-020-2010-1

摘要: Emerging needs for the large-scale industrialization of organic solar cells require high performance cathode interlayers to facilitate the charge extraction from organic semiconductors. In addition to improving the efficiency, stability and processability issues are major challenges. Herein, we design block copolymers with well controlled chemical composition and molecular weight for cathode interlayer applications. The block copolymer coated cathodes display high optical transmittance and low work function. Conductivity studies reveal that the block copolymer thin film has abundant conductive channels and excellent longitudinal electron conductivity due to the interpenetrating networks formed by the polymer blocks. Applications of the cathode interlayers in organic solar cells provide higher power conversion efficiency and better stability compared to the most widely-applied ZnO counterparts. Furthermore, no post-treatment is needed which enables excellent processability of the block copolymer based cathode interlayer.

关键词: organic solar cell     block copolymer     cathode interlayer    

PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized

Shuai Wang, Tong Li, Chen Chen, Baicang Liu, John C. Crittenden

《环境科学与工程前沿(英文)》 2018年 第12卷 第2期 doi: 10.1007/s11783-017-0980-0

摘要: Polyvinylidene fluoride grafted with poly(ethylene glycol) methyl ether methacrylate (PVDF-g-PEGMA) was synthesized using atomic transfer radical polymerization (ATRP) at different reaction times (9 h, 19 h, and 29 h). The corresponding conversion rates were 10%, 20% and 30%, respectively. PVDF was blended with the copolymer mixture containing PVDF-g-PEGMA, solvent and residual PEGMA under different reaction times. In this study, we explored the effect of the copolymer mixture additives with different synthesis times on cast membrane performance. Increasing the reaction time of PVDF-g-PEGMA causes more PVDF-g-PEGMA and less residual PEGMA to be found in the casting solution. Incremental PVDF-g-PEGMA can dramatically increase the viscosity of the casting solution. An overly high viscosity led to a delayed phase inversion, thus hindering PEGMA segments in PVDF-g-PEGMA from migrating to the membrane surface. However, more residual PEGMA contributed to helping more PEGMA segments migrate to the membrane surface. The pure water fluxes of the blended membrane with reaction times of 9 h, 19 h, and 29 h are 5445 L·m ·h , 1068 L·m ·h and 1179 L·m ·h , respectively, at 0.07 MPa. Delayed phase inversion can form smaller surface pore size distributions, thus decreasing the water flux for the membranes with PVDF-g-PEGMA at 19 h and 29 h. Therefore, we can control the membrane pore size distribution by decreasing the reaction time of PVDF-g-PEGMA to obtain a better flux performance. The membrane with PVDF-g-PEGMA at 19 h exhibits the best foulant rejection and cleaning recovery due to its narrow pore size distribution and high surface oxygen content.

关键词: Polyvinylidene fluoride ultrafiltration membrane     Amphiphilic copolymer     Blended modification     High flux     Atomic transfer radical polymerization    

Synthesis of a new iron (III) porphyrin acrylate-styrene copolymer and its catalysis for hydroxylation

YU Hancheng, LI Xixian, HUANG Jinwang, JI Liangnian, CHEN Xianli

《化学科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 65-67 doi: 10.1007/s11705-007-0013-9

摘要: A new iron (III) porphyrin acrylate-styrene copolymer, P[(PorFe)A-S], was synthesized by the reaction of iron (III) porphyrin acrylate with styrene and characterized by UV-Vis, Infrared spectra (IR), inductively coupled plasma-atomic emission spectrometry (ICP) and molecular weight determination. Its catalytic activity in the hydroxylation of cyclohexane for model cytochrome P450 in the P[(PorFe)A-S]-O ascrobate-thiosalicylic acid system has been studied. It was found that the P[(PorFe)A-S] has a higher catalytic activity than non-supported iron (III) porphyrin and its high catalytic activity remained in reuse. The catalytic activity of P[(PorFe)A-S] was discussed in the view of the microenvironment of iron (III) porphyrin. It is proposed that the atalytic activity of the P[(PorFe)A-S] may be further enhanced by construction of a homophase catalytic system containing the iron (III) porphyrin acrylate-styrene copolymer.

关键词: plasma-atomic emission     UV-Vis     weight determination     acrylate-styrene copolymer     styrene    

Effect of styrene-butadiene-styrene copolymer on the aging resistance of asphalt: An atomistic understanding

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1261-1276 doi: 10.1007/s11709-021-0761-5

摘要: To reveal the potential influence of styrene-butadiene-styrene (SBS) polymer modification on the anti-aging performance of asphalt, and its mechanism, we explored the aging characteristics of base asphalt and SBS-modified asphalt by reaction force field (ReaxFF) and classical molecular dynamics simulations. The results illustrate that the SBS asphalt is more susceptible to oxidative aging than the base asphalt under oxygen-deficient conditions due to the presence of unsaturated C=C bonds in the SBS polymer. In the case of sufficient oxygen, the SBS polymer inhibits the oxidation of asphalt by restraining the diffusion of asphalt molecules. Compared with the base asphalt, the SBS asphalt exhibits a higher degree of oxidation at the early stage of pavement service and a lower degree of oxidation in the long run. In addition, SBS polymer degrades into small blocks during aging, thus counteracting the hardening of aged asphalt and partially restoring its low-temperature cracking resistance.

关键词: SBS asphalt     oxidative aging     asphalt hardening     ReaxFF     molecular dynamics    

Laser ablation of block copolymers with hydrogen-bonded azobenzene derivatives

Jintang Huang, Youju Huang, Si Wu

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 450-456 doi: 10.1007/s11705-018-1735-6

摘要:

Supramolecular assemblies (PS-b-P4VP(AzoR)) are fabricated by hydrogen-bonding azobenzene derivatives (AzoR) to poly(4-vinyl pyridine) blocks of polystyrene-block-poly(4-vinyl pyridine) (PS-b-P4VP). PS-b-P4VP(AzoR) forms phase separated nanostructures with a period of ~75–105 nm. A second length scale structure with a period of 2 µm is fabricated on phase separated PS-b-P4VP(AzoR) by laser interference ablation. Both the concentration and the substituent of AzoR in PS-b-P4VP(AzoR) affect the laser ablation process. The laser ablation threshold of PS-b-P4VP(AzoR) decreases as the concentration of AzoR increases. In PS-b-P4VP(AzoR) with different substituents (R= CN, H, and CH3), ablation thresholds follow the trend: PS-b-P4VP(AzoCN)<PS-b-P4VP(AzoCH3)<PS-b-P4VP(AzoH). This result indicates that the electron donor group (CH3) and the electron acceptor group (CN) can lower the ablation threshold of PS-b-P4VP(AzoR).

关键词: laser ablation     block copolymers     hydrogen-bond     azobenzene derivatives     supramolecular assembly    

Solution properties and self-association of multi-blocks like copolymer P(AM/AA) prepared by template

ZHANG Yuxi, WU Feipeng, LI Miaozhen, WANG Erjian

《化学科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 68-71 doi: 10.1007/s11705-007-0014-8

摘要: The association and properties of multi-block like copolymers (TP) of acrylamide (AM) and acrylic acid (AA) prepared by template copolymerization in aqueous solution were studied. The results showed that the copolymers of this type exhibited a significant structure effect compared with that of similar random copolymers (CP) obtained by copolymerization in the absence of template. Decreasing the value of pH or adding Ca ion to the copolymer solution will make phase separation occur. The TEM images demonstrated that the phase separation caused by Ca ion was due to the formation of extensively intermolecular cross-linking. With the increase of the pH value of copolymer solution, the changes of the solution viscosity was similar with that of homopolyacrylic acid, which originally increased and then decreased. But the increase range of template copolymer was higher than that of homopolyacrylic acid. TEM images indicated that at the maximal viscosity the copolymer obtained in the presence of template formed coiled aggregates.

关键词: aqueous solution     homopolyacrylic     copolymer solution     significant structure     presence    

Preparation of copolymer-grafted mixed-mode resins for immunoglobulin G adsorption

Shenggang Chen, Tao Liu, Ruiqi Yang, Dongqiang Lin, Shanjing Yao

《化学科学与工程前沿(英文)》 2019年 第13卷 第1期   页码 70-79 doi: 10.1007/s11705-018-1745-4

摘要: The mixed-mode resins for protein adsorption have been prepared by a novel strategy, copolymer grafting. Specially, the copolymer-grafted resins CG-M-A with two functional groups, 5-amino-benzimidazole (ABI) and methacryloxyethyltrimethyl ammonium chloride (METAC), have been prepared through surface-initiated activator generated by electron transfer for atom transfer radical polymerization of METAC and glycidyl methacrylate (GMA), followed by a ring-open reaction to introduce ABI. The charge and hydrophobicity of CG-M-A resins could be controlled by manipulating the addition of METAC and GMA/ABI. Besides, METAC and ABI provided positive effects together in both protein adsorption and elution: dynamic binding capacity of human Immunoglobulin G (hIgG) onto CG-M-A resin with the highest ligand ratio of METAC to ABI is 46.8 mg·g at pH 9 and the elution recovery of hIgG is 97.0% at pH 5. The separation experiment showed that purity and recovery of monoclonal antibody from cell culture supernatant are 96.0% and 86.5%, respectively, indicating that copolymer-grafted mixed-mode resins could be used for antibody purification.

关键词: atom transfer radical polymerization     copolymer-grafting     mixed-mode resin     protein adsorption    

Ductility improvement of GFRP-RC beams using precast confined concrete block in compression zone

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0968-8

摘要: Fiber-reinforced polymers (FRPs) have received considerable research attention because of their high strength, corrosion resistance, and low weight. However, owing to the lack of ductility in this material and the quasi-brittle behavior of concrete, FRP-reinforced concrete (FRP-RC) beams, even with flexural failure, do not fail in a ductile manner. Because the limited deformation capacity of FRP-RC beams depends on the ductility of their compression zones, the present study proposes using a precast confined concrete block (PCCB) in the compression zone to improve the ductility of the beams. A control beam and four beams with different PCCBs were cast and tested under four-point bending conditions. The control beam failed due to shear, and the PCCBs exhibited different confinements and perforations. The goal was to find an appropriate PCCB for use in the compression zone of the beams, which not only improved the ductility but also changed the failure mode of the beams from shear to flexural. Among the employed blocks, a ductile PCCB with low equivalent compressive strength increased the ductility ratio of the beam to twice that of the control beam. The beam failed in pure flexure with considerable deformation capacity and without significant stiffness reduction.

关键词: ductility     four-point bending test     glass fiber-reinforced polymer     precast confined concrete block    

Morphologies of diblock copolymer confined in a slit with patterned surfaces studied by dissipative particle

FENG Jian, HUANG Yongmin, LIU Honglai, HU Ying

《化学科学与工程前沿(英文)》 2007年 第1卷 第2期   页码 132-139 doi: 10.1007/s11705-007-0025-5

摘要: Diblock copolymers with ordered mesophase structures have been used as templates for nano-fabrication. Unfortunately, the ordered structure only exists at micrometer-scale areas, which precludes its use in many advanced applications. To overcome this disadvantage, the diblock copolymer confined in a restricted system with a patterned surface is proved to be an effective means to prohibit the formation of defects and obtain perfect ordered domains. In this work, the morphologies of a thin film of diblock copolymer confined between patterned and neutral surfaces were studied by dissipative particle dynamics. It is shown that the morphology of the symmetric diblock copolymer is affected by the ratio of the pattern period on the surface to the lamellar period of the symmetric diblock copolymer and by the repulsion parameters between blocks and wall particles. To eliminate the defects in the lamellar phase, the pattern period on the surface must match the lamellar period. The difference in the interface energy of different compartments of the pattern should increase with increasing film thickness. The pattern period on the surface has a scaling relationship with the chain length, which is the same as that between the lamellar period and the chain length. The lamellar period is also affected by the polydispersity of the symmetric diblock copolymer. The total period is the average of the period of each component multiplied by the weight of its volume ratio. The morphologies of asymmetric diblock copolymers are also affected by the pattern on the surface, especially when the matching period of the asymmetric diblock copolymer is equal to the pattern period, which is approximately equal to the lamellar period of a symmetric diblock copolymer with the same chain length.

关键词: weight     nano-fabrication     morphology     matching     dissipative particle    

Highly selective detection of copper(II) by a “ligand-free” conjugated copolymer in nucleophilic solvents

Weixing Deng, Pengfei Sun, Quli Fan, Lei Zhang, Tsuyoshi Minami

《化学科学与工程前沿(英文)》 2020年 第14卷 第1期   页码 105-111 doi: 10.1007/s11705-019-1791-6

摘要: The synthesis of -cyclohexyl carbamate-attached fluorene- -phenylene copolymer (PFPNCC) and the use of PFPNCC as a “ligand-free” fluorescent chemosensor for Cu(II) are described. Addition of Cu(II) can efficiently quench the fluorescence of PFPNCC in nucleophilic solvents such as DMF and DMSO, but not in low nucleophilic solvents such as 1,4-dioxane and THF. Ultraviolet-visible spectra of the mixture of the conjugated polymer and Cu(II) indicate the presence of a reduced Cu(I) ion in the solution. Furthermore, fluorescence recovery of PFPNCC observed at low temperature suggests that the quenching and reducing mechanism is most probably due to a photo-induced electron transfer from excited PFPNCC to Cu(II). Our findings provide a novel strategy for highly selective conjugated polymer-based chemosensors for various target analytes, albeit “ligand-free”.

关键词: ligand-free     fluorescent chemosensor     copper     photo-induced electron transfer    

Wear mechanism of disc-brake block material for new type of drilling rig

WANG Xinhua, WANG Simin, ZHANG Siwei, WANG Deguo

《机械工程前沿(英文)》 2008年 第3卷 第1期   页码 10-16 doi: 10.1007/s11465-008-0009-2

摘要: To improve friction and wear performance and service life of the disc-brake pair material of a drilling rig, a new type of asbestos-free frictional material with better performance for disc-brake blocks is developed, and its wear mechanism is investigated by friction and wear experiments. Topography and elementary components of the brake block’s wear surface are analyzed by employing SEM and EDAX patterns, revealing its tribological behaviour and wear mechanism. When the frictional temperature is lower, the surface film of the brake block is thinner, dense, smooth with plasticity, and divided into the mixture area, Fe-abundant area, carbon-abundant area and spalling area. The mixture area consists of various constituents of frictional pairs without ploughing and rolling trace. The Fe-abundant area mainly consists of iron and other constituents. The carbon-abundant area is the zone where graphite and organic fibre are comparatively gathered, while the spalling area is the zone where the surface film is spalled and its surface is rough and uneven, with a loose and denuded state. During the period of high frictional temperature, the frictional surface is also divided into the mixture area, Fe-abundant area and spalling area. In this case, the mixture area consists of abrasive dust from friction pairs, and the surface film is distributed with crumby hard granules, exiguous oxide, carbide granules and sheared slender fibre. The Fe-abundant area is mostly an oxide layer of iron with a flaky distribution. Fracture and spalling traces as well as an overlapping structure of multilayer surface films can be easily found on the surface film. The components of the spalling area are basically the same as that of the matrix. At the beginning of wear, the hard peaks from the friction surface of the disc-brake plough on the surface of the brake block. With increasing frictional temperature, the friction surface begins to soften and expand, and oxidized wear occurs at the same time. During the high-temperature wear period, severely influenced by friction heat, obvious softening and plastic flow can be found on the friction surface of the brake block, its anti-shearing ability is weakened, and adhesive wear is intensified. Thermal decomposition of cohesive material in the brake block is simultaneously strengthened, so that constituents shed due to loss of adhesion. Organic fibre is in a flowing state and obviously generates drawing, shearing, carbonization and oxidization. In addition, thermal cracking, thermal oxidization, carbonization and cyclization of organic substances on the surface of brake block can make the friction surface produce pores or cracks, thus fatigue wear occurs.

关键词: asbestos-free frictional     Fracture     cyclization     friction     disc-brake    

Spatial embedded reinforcement of 20-node block element for analysis PC bridges

LONG Peiheng, DU Xianting, CHEN Weizhen

《结构与土木工程前沿(英文)》 2008年 第2卷 第3期   页码 274-280 doi: 10.1007/s11709-008-0039-1

摘要: The formula for the contribution of prestressed reinforcement on embedded reinforcement element is derived according to the mechanical behavior of PC bridges and the foundational principle of finite element method. Mechanical concept is definite and examples validate the calculation results. Reinforcement element model allows generating a finite element mesh without taking into consideration the layout of reinforcements. Furthermore, the prestressing tendon may pass through the concrete elements in an arbitrary manner. It is an effective approach that the no-node loads are diverted from the tendons to the adjacent concrete elements. A useful arithmetic analysis of the spatial curved tendon PC Bridges is provided.

关键词: arithmetic analysis     calculation     prestressed reinforcement     mechanical     arbitrary    

标题 作者 时间 类型 操作

Thermoresponsive block copolymer supported Pt nanocatalysts for base-free aerobic oxidation of 5-hydroxymethyl

期刊论文

Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in

Yang Zhou, Phillip Choi

期刊论文

Preparation of polysulfone-based block copolymer ultrafiltration membranes by selective swelling and

期刊论文

Block copolymers as efficient cathode interlayer materials for organic solar cells

Dingqin Hu, Jiehao Fu, Shanshan Chen, Jun Li, Qianguang Yang, Jie Gao, Hua Tang, Zhipeng Kan, Tainan Duan, Shirong Lu, Kuan Sun, Zeyun Xiao

期刊论文

PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized

Shuai Wang, Tong Li, Chen Chen, Baicang Liu, John C. Crittenden

期刊论文

Synthesis of a new iron (III) porphyrin acrylate-styrene copolymer and its catalysis for hydroxylation

YU Hancheng, LI Xixian, HUANG Jinwang, JI Liangnian, CHEN Xianli

期刊论文

Effect of styrene-butadiene-styrene copolymer on the aging resistance of asphalt: An atomistic understanding

期刊论文

Laser ablation of block copolymers with hydrogen-bonded azobenzene derivatives

Jintang Huang, Youju Huang, Si Wu

期刊论文

Solution properties and self-association of multi-blocks like copolymer P(AM/AA) prepared by template

ZHANG Yuxi, WU Feipeng, LI Miaozhen, WANG Erjian

期刊论文

Preparation of copolymer-grafted mixed-mode resins for immunoglobulin G adsorption

Shenggang Chen, Tao Liu, Ruiqi Yang, Dongqiang Lin, Shanjing Yao

期刊论文

Ductility improvement of GFRP-RC beams using precast confined concrete block in compression zone

期刊论文

Morphologies of diblock copolymer confined in a slit with patterned surfaces studied by dissipative particle

FENG Jian, HUANG Yongmin, LIU Honglai, HU Ying

期刊论文

Highly selective detection of copper(II) by a “ligand-free” conjugated copolymer in nucleophilic solvents

Weixing Deng, Pengfei Sun, Quli Fan, Lei Zhang, Tsuyoshi Minami

期刊论文

Wear mechanism of disc-brake block material for new type of drilling rig

WANG Xinhua, WANG Simin, ZHANG Siwei, WANG Deguo

期刊论文

Spatial embedded reinforcement of 20-node block element for analysis PC bridges

LONG Peiheng, DU Xianting, CHEN Weizhen

期刊论文